skip to main content


Search for: All records

Creators/Authors contains: "Baker, Jonathan L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Rapid permafrost degradation and peatland expansion occurred in Eurasia during the Early Holocene and may be analogous to the region’s response to anthropogenic warming. Here we present a 230 Th-dated, multiproxy speleothem record with subdecadal sampling resolution from Kyok-Tash Cave, at the modern permafrost margin in the northern Altai Mountains, southwestern Siberia. Stalagmite K4, covering the period 11,400 to 8,900 years before present, indicates an absence of stable permafrost within three centuries of the Younger Dryas termination. Between 11,400 and 10,400 years ago, speleothem δ 18 O is antiphased between the Altai and Ural ranges, suggesting a reorganization of the westerly wind systems that led to warmer and wetter winters over West Siberia and Altai, relative to the zonally adjacent regions of Northern Eurasia. At the same time, there is evidence of peak permafrost degradation and peatland expansion in West Siberia, consistent with the interpreted climate anomaly. Based on these findings, we suggest that modern permafrost in Eurasia is sensitive to feedbacks in the ocean-cryosphere system, which are projected to alter circulation regimes over the continent. 
    more » « less
  2. Abstract

    A full‐spectrum characterization of past interglacial climate is a necessary prerequisite for the detection and attribution of climate changes during the current interglacial. Here we present a speleothem record of Asian summer monsoon (ASM) during Marine Isotope Stage (MIS) 11 interglacial (MIS 11c), from Yongxing cave, China. The record's unprecedented chronologic constraints and decadal‐scale temporal resolution allow a precise and direct comparison of ASM between the MIS 11c and the Holocene. Our data suggest that orbital‐centennial patterns of ASM were remarkably similar during both interglacial, including their pacing and structure. Notably, a multi‐millennial stronger monsoon late in MIS 11c, the “Late‐MIS 11c shift,” is similar to the Late Holocene strengthening of the ASM, the “2‐Kyr shift.” Thus, the multicentennial ASM weakening at the end of the Late‐MIS 11c shift could imply that the current century‐long ASM waning trend may persist into the future, if only natural forcings are considered.

     
    more » « less